Algebra First Year Examination Exercises

- 1. State and prove Cayley's Theorem about finite groups.
- 2. (a) Compute the order of the general linear group $GL_n(\mathbb{Z}_p)$, with p a prime number.
 - (b) Calculate the order of the subgroup $\mathrm{SL}_n(\mathbb{Z}_p)$ of matrices which have determinant 1.
- 3. (a) Prove that two elements of the symmetric group S_n are conjugate if and only if their cycle types are the same.
 - (b) Is this true for the alternating groups? Justify your answer.
- 4. Prove that if |G| = 12 and G has 4 Sylow 3-subgroups, then $G \cong A_4$. (Hint: let G act by conjugation on the 4 Sylow 3-subgroups.)
- 5. Let p and q be prime numbers, and suppose that p < q. If G is a group of order pq and p does not divide q 1, show that G must be cyclic.
- 6. Recall that a group G is called a p-group (p a prime number) if for each $g \in G$, $g^{p^i} = 1$, for some positive integer i.
 - Prove that if G is a finite p-group, then its center is not trivial. Then use this fact to prove that every finite p-group is nilpotent.
- 7. Suppose that $\phi: G \longrightarrow H$ and $\theta: G \longrightarrow K$ are homomorphisms between groups. Assume that ϕ is surjective. Show that if $Ker(\phi)$ is contained in $Ker(\theta)$ then there is a unique homomorphism $\theta^*: H \longrightarrow K$ such that $\theta^* \cdot \phi = \theta$.
- 8. Prove that if G is a finite group then any subgroup of index 2 is normal.
- 9. Prove that any subgroup of a cyclic group is cyclic.
- 10. Find all the automorphisms of order 3 of \mathbb{Z}_{91} . (Hint: How can \mathbb{Z}_3 act nontrivially on \mathbb{Z}_{91} ?) Does \mathbb{Z}_{91} have any automorphisms of order 5? Explain.
- 11. Suppose that G is a nonabelian group of order 21. Prove:
 - (a) $Z(G) = \{e\};$
 - (b) G has an automorphism which is not inner.
- 12. Let $GL_2(\mathbb{Z}_3)$ act on the four one-dimensional subspaces of \mathbb{Z}_3^2 by $g(Span\{v\}) = Span\{gv\}$, where $g \in GL_2(\mathbb{Z}_3)$ and $v \in \mathbb{Z}_3^2$. Prove that this action induces a surjective homomorphism of $GL_2(\mathbb{Z}_3)$ onto S_4 whose kernel is the subgroup of all scalar matrices.
- 13. Let p be a prime number and n be a positive integer. Prove that the general linear group $GL_n(\mathbb{Z}_p)$ is isomorphic to the automorphism group of $\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ (n times).
- 14. Suppose that $\phi: G \longrightarrow H$ is a surjective homomorphism of groups. Prove the following about the assignment $\phi^*: N \mapsto \phi^{-1}(N)$. Assume that it maps subgroups to subgroups.
 - (a) ϕ^* is a bijection between the lattice of subgroups of H and the set of subgroups of G that contain $Ker(\phi)$.
 - (b) $N_1 \subseteq N_2$ if and only if $\phi^*(N_1) \subseteq \phi^*(N_2)$.
 - (c) $\phi^*(N)$ is normal in G if and only if N is normal in H.

- 15. Let G be a finite group acting on the set S. Suppose that H is a normal subgroup of G so that for any $s_1, s_2 \in S$ there is a unique $h \in H$ so that $hs_1 = s_2$. For each $s \in S$, let $G_s = \{g \in G : gs = s\}$. Prove
 - (a) $G = G_s H$, and $G_s \cap H = \{e\}$;
 - (b) if H is contained in the center of G, then G_s is normal and G is (isomorphic to) a direct product of G_s and H.
- 16. Suppose that G is a group and H is a proper subgroup of index k. Show that
 - (a) g*(xH) = gxH defines a group action of G on the set $\Omega = (G/H)_l$ of left cosets of H;
 - (b) the kernel of the induced homomorphism into the permutation group on Ω is the intersection of all the conjugates of H.
 - (c) Now suppose that G is simple and that k > 1 is the index of H. Then show that G is isomorphic to a subgroup of S_k .
- 17. Prove that a group of order 30 must have a normal subgroup of order 15.
- 18. Classify the groups of order 70.
- 19. Show that if G is a subgroup of S_n (n a natural number) containing an odd permutation, then half the elements of G are odd and half are even.
- 20. Use 19 to prove that if G is a group of order 2m, with m odd, then G cannot be simple, and, indeed, contains a subgroup of index 2.
- 21. Classify the groups of order 4p, where $p \geq 5$ is prime.
- 22. Let p be an odd prime number.
 - (a) Prove that in $GL_2(\mathbb{Z}_p)$ every element A of order 2, $A \neq -I$, is conjugate to the diagonal matrix U, for which $U_{11} = -1$ and $U_{22} = 1$.
 - (b) Now classify the groups of order $2p^2$, for which the Sylow p-subgroups are not cyclic.
- 23. (a) Prove that there are exactly four homomorphisms from \mathbb{Z}_2 into $Aut(\mathbb{Z}_8)$.
 - (b) Show that these yield four pairwise nonisomorphic semidirect products.
- 24. Prove that S_4 contains no non-abelian simple groups.
- 25. Use the result of 24 to prove that if G is a nonabelian simple group, then every proper subgroup of G has index at least 5.
- 26. Prove that D_{2n} is nilpotent if and only if n is a power of 2. (Hint: Use the ascending central chain; recall that if there is an even number number of vertices n, then $Z(D_{2n}) \neq \{e\}$.
- 27. Let G be the group of all 3 by 3 upper triangular matrices, with entries in \mathbb{Z} , and diagonal entries equal to 1. Prove that the commutator of G is its center.
- 28. Let P be a Sylow p-subgroup of H and $H \leq K$. If P is normal in H and H is normal in K, prove that P is normal in K. Deduce that if $P \in Syl_p(G)$ then $N_G(P)$ is selfnormalizing.
- 29. Prove that if G is a finite group, and each Sylow p-subgroup is normal in G, then G is a direct product of its Sylow subgroups.

- 30. Classify the abelian groups of order $2^5 \cdot 5^2 \cdot 17^3$.
- 31. Prove that $(\mathbb{Q}, +)$, the additive group of rational numbers is not cyclic.
- 32. Prove that $Aut(\mathbb{Z}_k)$ is isomorphic to the group U(k) of integers i, with $1 \leq i < k$, which are relatively prime to k, under multiplication modulo k.
- 33. Give examples of each of the following, with a brief explanation in each case:
 - (a) A solvable group with trivial center.
 - (b) An abelian p-group which is isomorphic to one of its proper subgroups and also one of its proper homomorphic images.
 - (c) An abelian group having no maximal subgroups.
 - (d) A direct product of nilpotent groups which is not nilpotent.
 - (e) A semidirect product of abelian groups which is not nilpotent.
 - (f) A finite nonabelian group in which every proper subgroup is cyclic.
- 34. Each three-cycle in S_n has $\frac{1}{3}n(n-1)(n-2)$ conjugates. Prove this and conclude from it that A_4 is the only subgroup of S_4 of order 12.
- 35. Prove that A_5 is a simple group.
- 36. For $n \geq 5$, prove that A_n is the only proper, nontrivial normal subgroup of S_n .
- 37. Let G be a finite group. Call $x \in G$ a non-generator if for each subset $Y \subseteq G$, if $G = \langle Y \cup \{x\} \rangle$ then $G = \langle Y \rangle$. Prove:
 - (a) The subset $\Phi(G)$ of all non-generators of G form a subgroup of G.
 - (b) $\Phi(G)$ is the intersection of all maximal subgroups of G.
 - (c) Conclude from (b) that $\Phi(G)$ is normal.
 - (d) What is the Frattini subgroup of S_n ? Explain. (Consider the stabilizers of a single letter.
- 38. State and prove the Orbit-Stabilizer Theorem.
- 39. Show that if G is a simple abelian group then it is cyclic of prime order.
- 40. For the additive group of rational numbers $(\mathbb{Q}, +)$, show that the intersection of any two nontrivial subgroups is nontrivial.
- 41. Show that the group $(\mathbb{Q}, +)$ of additive rational numbers has no maximal subgroups. (Hint: Use the lattice isomorphism theorem (Exercise 14) and Exercise 39.)
- 42. The commutator subgroup G' of a group G is defined as the subgroup generated by the set

$$\{x^{-1}y^{-1}xy: x, y \in G\}.$$

Prove that:

- (a) Show that G' is a normal subgroup of G.
- (b) Show that G/G' is abelian.

- (c) Show that if $\phi: G \longrightarrow H$ is a homomorphism into the abelian group H, then there exists a unique homomorphism $\hat{\phi}: G/G' \longrightarrow H$ such that $\hat{\phi}(G'x) = \phi(x)$, for each $x \in G$.
- 43. Suppose that G is a group and H is a normal subgroup. Prove that $G/C_G(H)$ is isomorphic to a subgroup of Aut(H). (Hint: let G act on H by conjugation.)
- 44. Let G be a group of 385 elements. Prove that the Sylow 11-subgroups are normal, and that any Sylow 7-subgroup lies in the center.
- 45. Describe all the groups of 44 elements, up to isomorphism. (Hint: use semidirect products.)
- 46. Suppose that |G| = 105. If G has a normal Sylow 3-subgroup, prove that it must lie in the center of G.
- 47. Let G and H be the cyclic groups of orders n and k, respectively. Prove that the number of homomorphisms from G to H is the sum of all $\phi(d)$, where d runs over all common divisors of n and k, and ϕ denotes the Euler ϕ -function.
- 48. Let R be the ring of all n by n matrices with integer entries. Prove that the matrix $a \in R$ is invertible if and only if its determinant is ± 1 . (Would you believe: Cramer's Rule?)
- Using Zorn's Lemma, prove that each non-zero commutative ring with an identity has maximal ideals.
- 50. Using Zorn's Lemma, prove that in each non-zero commutative ring with identity minimal prime ideals exist.
- 51. Consider $A = \mathbb{R}^{\mathbb{N}}$, the ring of all real valued sequences, under pointwise operations. Prove:
 - (a) for each $n \in \mathbb{N}$, $M_n = \{ f \in A : f(n) = 0 \}$ is a maximal ideal of A;
 - (b) there exist maximal ideals besides the M_n $(n \in \mathbb{N})$. (Zorn's Lemma)
- 52. Suppose that A is a commutative ring with identity. Suppose that $a \in A$ is not nilpotent. Prove that there is a prime ideal that fails to contain a. Use this to show that the set of all nilpotent elements of A is the intersection of all the prime ideals of A.
- 53. Let F be a field, and A = F[[X]] denote the ring of formal power series in one variable. Prove the following:
 - (a) The units of A are precisely the power series whose constant term is nonzero.
 - (b) Suppose that $k \geq 1$ is an integer. Let I_k denote the set of all power series $\sum_{n=0}^{\infty} a_n X^n$ for which a_0, \ldots, a_{k-1} are all zero. Each I_k is an ideal of A.
 - (c) If J is a nonzero proper ideal of A, then $J=I_m,$ for some $m\geq 1.$
- 54. Prove the Divison Algorithm for the ring $\mathbb{Z}[i]$ of Gaussian integers.
- 55. Let D be an integer which is not a square in \mathbb{Z} . Consider the subring $\mathbb{Z}[\sqrt{D}] = \{a + b\sqrt{D} : a, b \in \mathbb{Z}\}$; (do not prove it is a subring.) Define $N(a + b\sqrt{D}) = a^2 Db^2$. Assume that N(xy) = N(x)N(y), for all $x, y \in \mathbb{Z}[\sqrt{D}]$. Prove that
 - (a) $a + b\sqrt{D}$ is a unit of $\mathbb{Z}[\sqrt{D}]$ if and only if $N(a + b\sqrt{D}) = \pm 1$.
 - (b) If D < -1, prove that the units of $\mathbb{Z}[\sqrt{D}]$ are precisely ± 1 .

- 56. A ring R is boolean if it has an identity and $x^2 = x$, for each $x \in R$. Prove:
 - (a) Every boolean ring has characteristic 2 and is commutative.
 - (b) Assume R is a boolean ring. Prove that every prime ideal is maximal.
- 57. A ring R is boolean if it has an identity and $x^2 = x$, for each $x \in R$. Assume the preceding exercise. Use the Chinese Remainder Theorem to prove that every finite boolean ring has 2^n elements, for a suitable non-negative integer n.
- 58. Suppose that A is a non-zero commutative ring with identity. Let n(A) denote the set of nilpotent elements of A; you may assume here that it is an ideal. Prove the equivalence of the following three statements:
 - (a) Every nonunit of A is nilpotent.
 - (b) A/n(A) is a field.
 - (c) A has exactly one prime ideal.
- 59. Prove the Chinese Remainder Theorem: if A is a commutative ring with identity, and I and J are comaximal ideals of A, then $IJ = I \cap J$, and the homomorphism $\phi : A \to A/I \times A/J$, by $\phi(a) = (a + I, a + J)$ is surjective.
- 60. Let D be an integral domain. Prove that the ring D[T] of polynomials over D in one indeterminate is a principal ideal domain if and only if D is a field.
- 61. Let A be a commutative ring with 1. Suppose that I and J are ideals of A. Prove that
 - (a) Prove that $IJ \subseteq I \cap J$, and give an example where equality does not hold.
 - (b) Suppose that A is the (ring) direct product of two fields. Show that $IJ = I \cap J$, for any two ideals I and J of A.
- 62. Suppose that D is an integral domain. A polynomial f(X) over D is primitive if the greatest common divisor of its coefficients is 1.
 - Prove the following form of Gauss' Lemma: If D is a unique factorization domain, then the product of any two primitive polynomials over D is primitive.
- 63. Let A be an integral domain, and P be a prime ideal of A. Define A_P to be the subset of the quotient field K of A, consisting of all fractions whose denominator is not in P. Prove that
 - (a) A_P is a subring of K;
 - (b) A_P has exactly one maximal ideal; identify it.
- 64. (a) Define Euclidean domain and principal ideal domain.
 - (b) Prove that any Euclidean domain is a principal ideal domain.
- 65. Convince that the polynomial rings $\mathbb{Z}[X]$ and $\mathbb{Q}[X]$ have the same field of fractions, but the power series rings $\mathbb{Z}[[X]]$ and $\mathbb{Q}[[X]]$ do not.
- 66. Consider the polynomial $X^2 + 1$ over the field \mathbb{Z}_7 . Prove that $E = \mathbb{Z}_7[X]/(X^2 + 1)$ is a field of 49 elements.

67. Let n be a natural number; prove that the polynomial

$$\Phi_n(X) = \frac{X^n - 1}{X - 1}$$

is irreducible over the ring \mathbb{Z} precisely when n is prime.

- 68. Prove that $X^2 + Y^2 1$ is irreducible in $\mathbb{Q}[X, Y]$.
- 69. Give examples of the following, and justify your choices:
 - (a) A unique factorization domain which is not a principal ideal domain.
 - (b) A local integral domain with a nonzero prime ideal that is not maximal.
 - (c) An integral domain in which the uniqueness provision of "unique factorization" fails.
- 70. Suppose that F is a field and G is a finite multiplicative subgroup of $F \setminus \{0\}$. Prove that G is cyclic.
- 71. Suppose that F is a field and $q(X) = a_0 + a_1 X + \cdots + a_{n-1} X^{n-1} + X^n$ is an irreducible polynomial in F[X]. Prove that E = F[X]/(q(x)) is a field which is an n dimensional vector space over F.
- 72. Let R be a ring with identity and M be an R-module. An element $x \in M$ is called a *torsion element* if rx = 0, for some nonzero $r \in R$. Let T(M) denote the subset of all torsion elements of M.
 - (a) If R is an integral domain show that T(M) is a submodule of M.
 - (b) Give an example to show that T(M), in general, is not a submodule of M.
- 73. Suppose that A is a commutative ring with identity, and I is an ideal of A.
 - (a) For each positive integer n, prove that

$$A^n/IA^n \cong A/I \times \cdots \times A/I;$$

- (b) Use (a) to prove that if $A^m \cong A^n$, where m and n are positive integers, then m = n. (You may use the corresponding fact for fields.)
- 74. Prove that \mathbb{Q} , the additive group of the rationals, is not a free abelian group. (Hint: The rank of \mathbb{Q} is one.)
- 75. Suppose that G is an abelian group, generated by x_1, x_2, x_3, x_4 , and subject to the relations:

$$4x_1 - 2x_2 - 2x_3 = 0$$
; $8x_1 - 12x_3 + 20x_4 = 0$; $6x_1 + 4x_2 - 16x_4 = 0$.

Write G as a direct product of cyclic groups.

- 76. Let R be a commutative ring with identity. If F is a free R-module of rank $n < \infty$, then show that $\operatorname{Hom}_R(F, M) \cong M^n$, for each R-module M.
- 77. Let V be a vector space over the field F. Suppose that U_1 and U_2 are finite dimensional subspaces of V. Prove that $dim(U_1) + dim(U_2) = dim(U_1 \cap U_2) + dim(U_1 + U_2)$.

- 78. Suppose that $T:V\longrightarrow W$ is a linear transformation between vector spaces over the same field F. Prove that T is one to one precisely when it maps linearly independent sets to linearly independent sets.
- 79. Suppose that $T: V \longrightarrow V$ is a linear transformation on the vector space V. Call T a projection if $T^2 = T$. Prove that if T is a projection then $V = Ker(T) \oplus Im(T)$.

Give an example to show that the converse of the above proposition is false.

- 80. Suppose that V is a finite dimensional vector space over the field F and that $T: V \longrightarrow W$ is a linear transformation into a vector space W over F. Prove that dim(V) = dim(Ker(T)) + dim(Im(T)). (Caution: The finite dimensionality of Im(T) must be established.)
- 81. Obtain a formula for the number of one dimensional subspaces of an n dimensional vector space over the field \mathbb{Z}_p of p elements (p is a prime number). Justify your choice.
- 82. (a) Define: Irreducible module over a ring R with identity 1.
 - (b) Now assume that R is commutative as well. Prove that the R-module M is irreducible if and only if $M \cong R/I$, where I is a maximal ideal of R. Use this to classify the irreducible \mathbb{Z} -modules.
- 83. (a) Define: Irreducible module over a ring R with identity 1.
 - (b) Prove Schur's Lemma: Suppose that M is an irreducible module; then every nonzero endomorphism of M is an automorphism. Show how one concludes from this that End(M) is a division ring, when M is irreducible.
- 84. Let R be a ring with identity. Suppose that $\phi: M \longrightarrow F$ is a surjective R-homomorphism and that F is a free R-module. Prove that $M = Ker(\phi) \oplus N$, where $N \cong F$.
- 85. Let R be a principal ideal domain and M be a torsion R-module. Define primary module and prove that M is isomorphic to a direct sum of primary R-modules.
- 86. Suppose that V is a finite dimensional vector space over the field F and that T is a linear transformation on V, so that the induced module action of F[X] on V defines a cyclic module with cyclic vector w. Prove:
 - (a) The set $\{w, Tw, T^2w, \dots, T^kw\}$ is a basis for a suitable k.
 - (b) Compute the matrix of T relative to this basis, pointing out the relationship which the entries of this matrix and k have to the monic polynomial in F[X] that generates the annihilator of w.
 - (c) Compute the characteristic polynomial of the matrix in (b).
- 87. Suppose that T is a linear transformation on a finite dimensional vector space V, over the field F. Prove that T is diagonalizable if and only if $m_T(X)$, the minimum polynomial of T, can be factored as

$$m_T(X) = (X - \lambda_1)(X - \lambda_2) \cdots (X - \lambda_k),$$

where the $\lambda_i \in F$ (i = 1, ..., k) are distinct.

88. Suppose that A is a nilpotent 6×6 matrix, with entries in a field. Find all possible Jordan forms of A, justifying your arguments.

- 89. Prove that in $GL_2(\mathbb{Q})$ all the elements of order four are conjugate. (Hint: Consider the rational canonical form of such an element.)
- 90. Suppose that V is a vector space of dimension 7 over the field of real numbers \mathbb{R} , and T is a linear transformation on V which satisfies $T^4 = I$. Compute the following:
 - (a) the possible minimum polynomials of T, and the characteristic polynomial that goes with each choice;
 - (b) the possible Rational Canonical Forms of T.
- 91. Suppose that V is a finite dimensional vector space over \mathbb{Q} , and T is an invertible linear transformation on V for which $T^{-1} = T^2 + T$. Prove:
 - (a) The dimension of V is a multiple of 3.
 - (b) If the dimension is 3, prove that all such transformations are similar.
- 92. Consider: All 3×3 matrices $A \neq I$ with real entries, such that $A^3 = I$ are similar over \mathbb{R} . Prove or disprove by example.
- 93. Prove, over any field F, that if two 2×2 matrices or two 3×3 matrices have the same minimum and characteristic polynomials then they are similar matrices.

Give an example which shows that this is false for matrices of greater dimension.

94. On a vector space V of dimension 8 over the field \mathbb{Q} , T is a linear transformation for which the minimum polynomial is

$$m_T(X) = (X^2 + 1)^2(X - 3).$$

Determine all possible Rational Canonical Forms. Justify your answer.

- 95. A projection is a linear transformation $P: V \to V$ on a vector space V for which $P^2 = P$. Assume that V has finite dimension and prove the following:
 - (a) Any projection is diagonalizable.
 - (b) Two projections have the same diagonal form if and only if their kernels have the same dimension.
- 96. Prove that there are exactly two conjugacy classes of 5×5 matrices with entries in \mathbb{Q} for which $T^8 = I$ and $T^4 \neq I$.
- 97. T is a linear transformation on the n dimensional space V, over the field F, and there is a basis $\{v_1, \ldots, v_n\}$ for V for which $Tv_i = v_{i+1}$, for $i = 1, 2, \ldots, n-1$, and $Tv_n = v_1$. As a module over F[X] with the action induced by T, show that
 - (a) V is a cyclic module but not irreducible.
 - (b) If $F = \mathbb{Q}$ and n is a prime number prove that V is the direct sum of two irreducible F[X]-submodules, of dimensions 1 and n-1, respectively, over \mathbb{Q} . (Hint: Find the minimum polynomial of T.)
- 98. (a) Define the terms eigenvector and eigenvalue of a linear transformation T.
 - (b) Prove that a set of eigenvectors of T for which the corresponding eigenvalues are distinct must be linearly independent.

- 99. Find one representative of each conjugacy class of elements of order 2 in the group $GL_5(\mathbb{Z}_2)$ of invertible 5×5 matrices with entries in the field of integers mod 2.
- 100. Let $GL_4(\mathbb{Z}_3)$ denote the group of all invertible 4 by 4 matrices with entries in \mathbb{Z}_3 , the field of three elements. Use rational canonical forms to determine the number of conjugacy classes of elements of order 4. Give the rational canonical form for each class.
- 101. Over \mathbb{Q} , compute the Jordan canonical form J of

$$A = \left(\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

Then find a matrix S such that $J = SAS^{-1}$.

102. Over \mathbb{Q} , consider the following matrix:

$$A = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right)$$

Answer the following:

- (a) Prove that A is diagonalizable.
- (b) Is the $\mathbb{Q}[T]$ -module structure on \mathbb{Q}^4 by A, via f(T)v = f(A)v cyclic? Explain.
- 103. Let $\mathbb C$ be the field of complex numbers. Prove that each irreducible $\mathbb C[T]$ -module is isomorphic to $\mathbb C$.
- 104. Prove that if F is a finite field, then there is a prime number p and a natural number n, so that F has p^n elements.
- 105. Suppose that F is a subfield of K and K a subfield of L, so that the dimensions [K:F] and [L:K] are finite. Prove that [L:F] is also finite and that

$$[L:F] = [L:K][K:F].$$

- 106. Determine the dimension over \mathbb{Q} of the extension $\mathbb{Q}(\sqrt{3+2\sqrt{2}})$. Justify your arguments.
- 107. Prove that $\mathbb{Q}(\sqrt{3}, \sqrt{5}) = \mathbb{Q}(\sqrt{3} + \sqrt{5})$. Conclude that $[\mathbb{Q}(\sqrt{3}, \sqrt{5}) : \mathbb{Q}] = 4$, and find a monic irreducible polynomial over \mathbb{Q} satisfied by $\sqrt{3} + \sqrt{5}$.
- 108. Suppose that F is a field whose characteristic is not 2. Assume that $d_1, d_2 \in F$ are not squares in F. Prove that $F(\sqrt{d_1}, \sqrt{d_2})$ is of dimension 4 over F if d_1d_2 is not a square in F and of dimension 2 otherwise.
- 109. Suppose that [F(u):F] is odd; prove that $F(u)=F(u^2)$.
- 110. Let L be a field extension of F. Prove that the subset E of all elements of L which are algebraic over F is a subfield of L containing F.

- 111. Determine the splitting field of $X^4 2$ over \mathbb{Q} . It suffices to describe it as the subfield of \mathbb{C} , the field of complex numbers, generated by certain well-identified elements. Justify your choices.
- 112. Suppose that F is a field. For $f(X) = a_n X^n + \cdots + a_1 X + a_0 \in F[X]$, define the derivative $D_X f(X)$ by

$$D_X f(X) = na_n X^{n-1} + \dots + 2a_2 X + a_1.$$

Prove the following: In a splitting field of f(X), u is a multiple root of f(X) if and only if u is a root of the derivative of f(X).

113. Assume the existence and uniqueness, up to isomorphism, of the splitting field of a polynomial over an arbitrary base field. Let p be a prime number. Now consider the polynomial $X^{p^n} - X$ over the field \mathbb{Z}_p of p elements. Let K_{p^n} be its splitting field. Prove that K_{p^n} has p^n elements. (Hint: Consider the set of all roots of $X^{p^n} - X$.)

Now consider any field F having p^n elements. Prove that $F \cong K_{p^n}$. (Hint: Use the fact that the multiplicative group of nonzero elements of F is cyclic.)